
CHES Maritime Conference Optimizing Air Handling Unit Performance in Healthcare Facilities

Luke Hancox, P. Eng, CBCP Kyle McCluskey, EIT November 2022

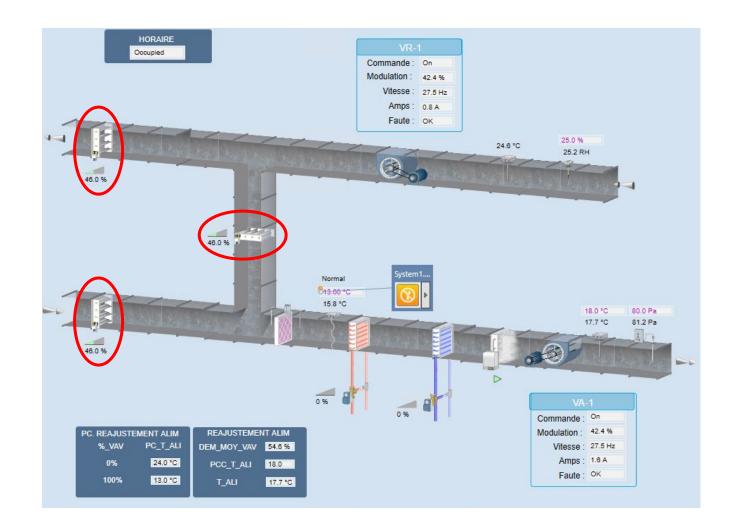
Introduction

Figure 3. Energy use by end use

https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/oee/buildings/pdf/NRCan_Hospital_e.pdf

Why focus on air handling? > HVAC accounts for over 50% of a typical hospital's energy use!

 Hospital ventilation systems require a lot of heating energy

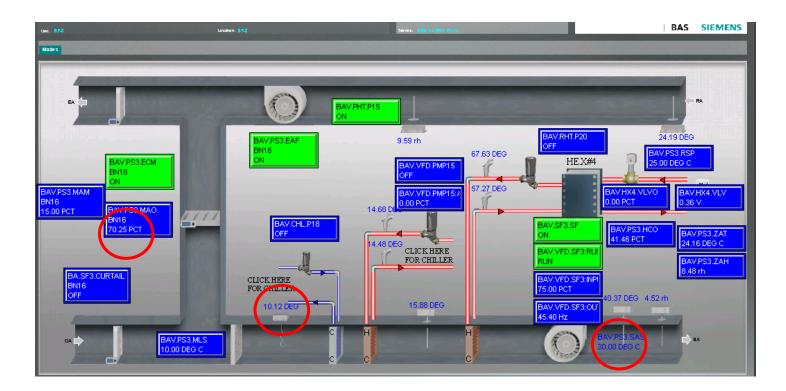

Page 2 Unrestricted | © Siemens 2022 | Energy Services | November 2022

Mixed-air Units

Economizer Control

Dry bulb vs. enthalpy control

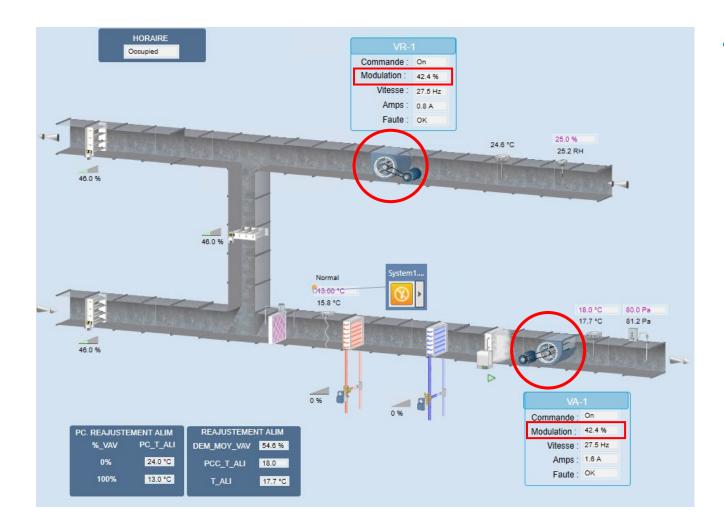
Dry bulb looks at only temperature; enthalpy uses temperature and humidity


• Fixed vs. differential control

Do we look at outdoor air conditions vs. fixed point, or outdoor vs. return?

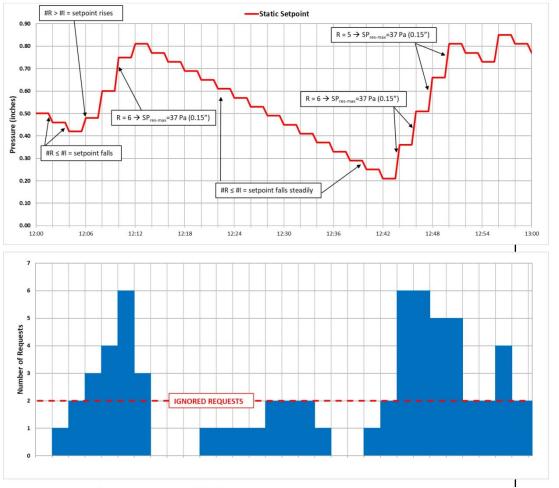
No one-size-fits-all!

Optimal MAT Control


• Should the economizer control for SAT or MAT?

> MAT control is very common, but...

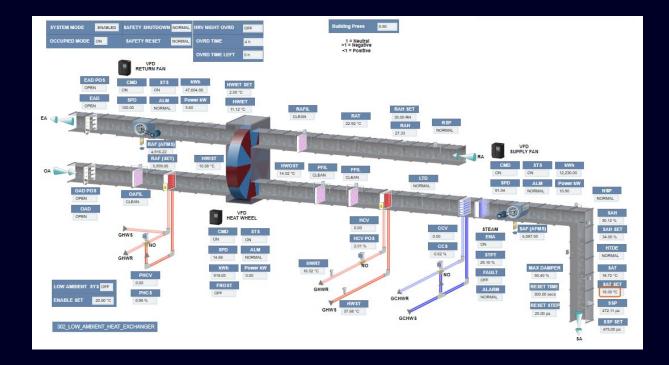
SAT control wastes less heating energy!


Optimal Fan Speed Control

• Static pressure control (VAV systems)

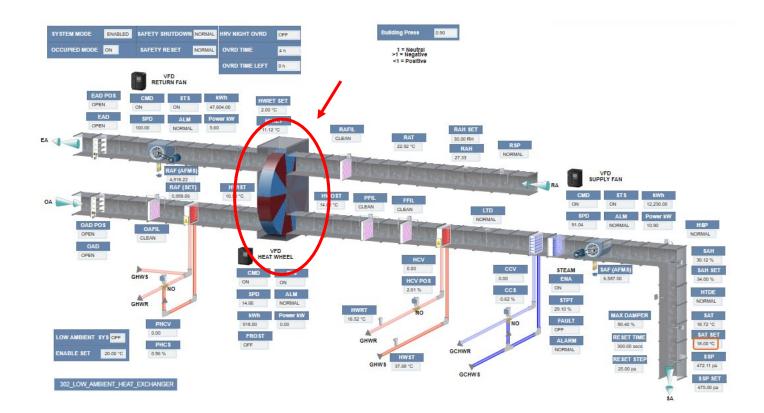
Page 6 Unrestricted | © Siemens 2022 | Energy Services | November 2022

Example of Pressure Reset (*Trim & Respond*)

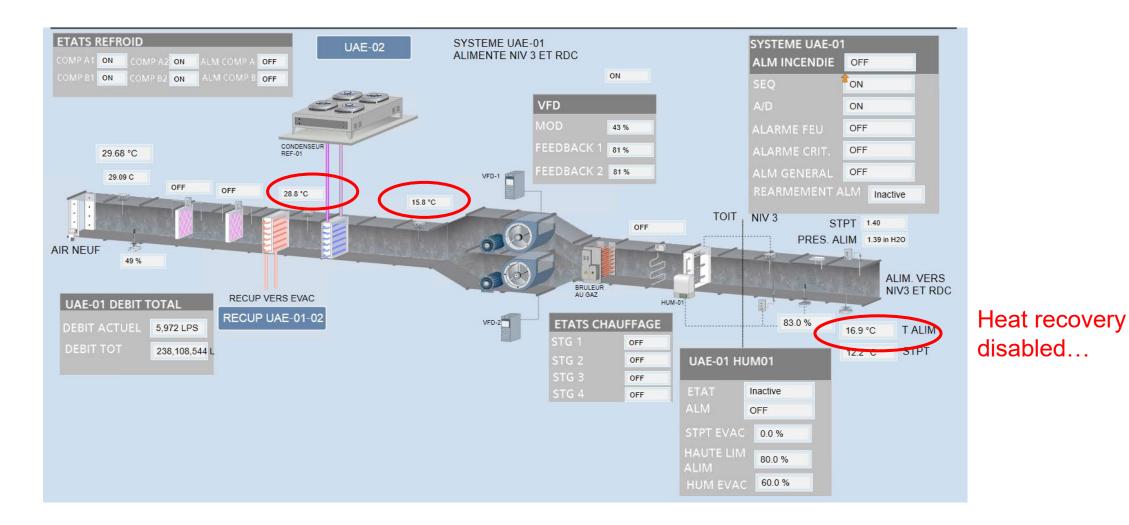

Informative Figure 5.1.14.4 Example sequence trend graph.

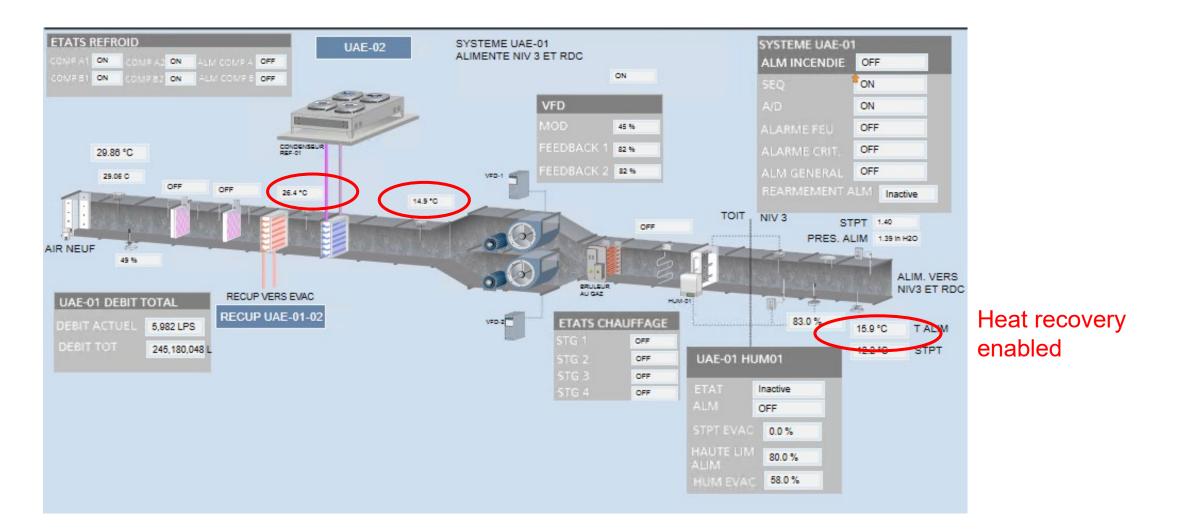
ASHRAE Guideline 36

Pressure fluctuates throughout the day as demand changes

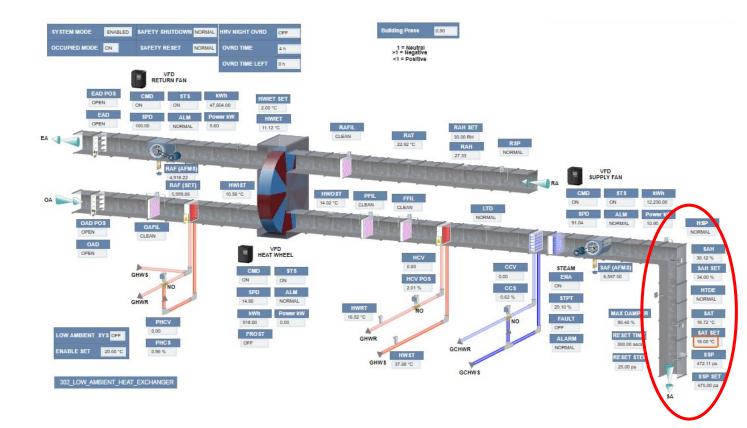


100% Outdoor Air Systems


Heat Recovery


- When should heat recovery be enabled?
- How should it be controlled?
- How should we manage frost control?
- Can we use heat recovery for cooling?

Heat Recovery in Cooling



Heat Recovery in Cooling

Page 11 Unrestricted | © Siemens 2022 | May 2022

Optimal SAT Control

• RAT-based control

 Trim & Respond (T&R) according to feedback from spaces

Demand-controlled Ventilation (DCV)

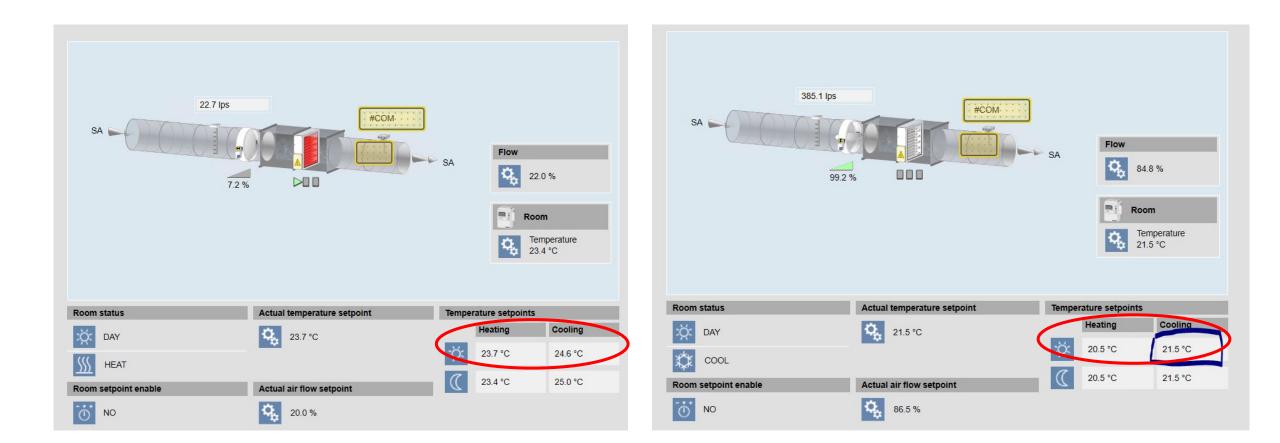
- What is it?
- How is it implemented?
- When it is appropriate?

Demand-Controlled Ventilation (DCV) What does CSA Z317.2 say?

6.19.8 Demand-controlled ventilation

Except as otherwise specified in this Standard (e.g., for Type I and Type II areas), demand-controlled ventilation should be incorporated in areas where wide variations in occupancy are anticipated. **Note:** *This Clause applies to areas without a specific health care function, such as conference rooms, classrooms, and public areas.*

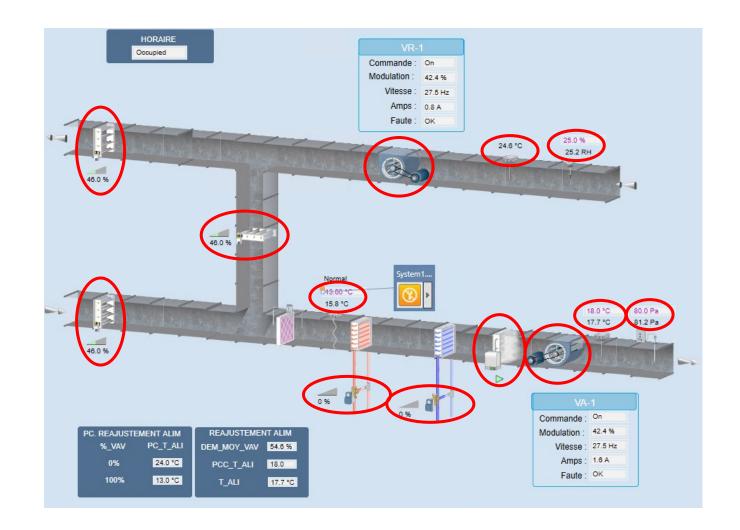
• Occupancy-based control can be used in spaces with a healthcare function.



Common Opportunities — Programming

	00310	•
-	00450	-
0.	00470	
		ONPWRT(550) GOTO 1000
	00510	
		SECNDS = 0
11	00550	
×	00570	
X	01000	IF("CY.PHOTO.CELL" .EQ. ON) THEN ON("CY.LTG") ELSE OFF("CY.LTG")
~	01000	C
64	01020	-
	01060	
	01100	IF(SECNDS ,LT, 20) THEN ON("CY,LIGHT:DO 1") ELSE OFF("CY,LIGHT:DO 1")
	01120	
	01160	-
	01180	C
	01220	IF(SECNDS .LT. 100) THEN ON("CY.LIGHT:DO 3") ELSE OFF("CY.LIGHT:DO 3")
	01240	c
	01280	IF(SECNDS .LT. 140) THEN ON("CY.LIGHT:DO 4") ELSE OFF("CY.LIGHT:DO 4")
	01300	c
	01340	IF(SECNDS .LT. 180) THEN ON("CY.LIGHT:DO 5") ELSE OFF("CY.LIGHT:DO 5")
	01344	c
	01400	C
	01402	-
	01404	-
	01405	•
	01406	C TEMINE CT 07:00 AND TIME IT 16:00 THEN COTO 14:00
	Output	
	All state	ments have compiled successfully.

SIEMENS


Terminal Equipment Control

Common Opportunities — Malfunctions

Common Malfunctions

- Heating/cooling coil valve leak
- Coil valves not responding
- Temperature/RH sensor calibration
- Stuck dampers
- OPER overrides left on

Digital Tools — For System Analysis

- Observation Matrix (for multiple AHU's)
- Findings Summary
- Data Quality Table

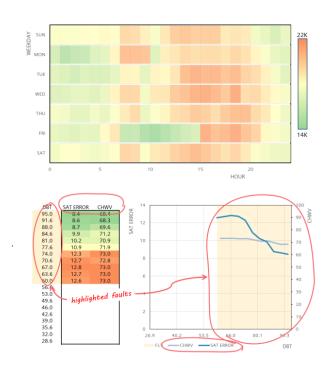
SUPPLY FAN

Select Data Visualization of the Analysis Tests

SSP below STPT with 100% SF SPD

Supply air CFM sensor OPER or FAILED

Tune fan control loop


Supply fan SPD in OPER SSP STPT in OPER

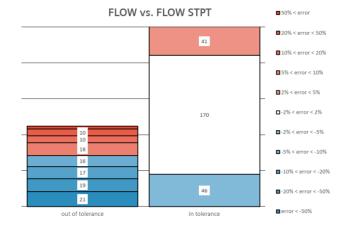
SSP sensor OPER or FAILED

nded tigation	NOAASD.AH.01.	NOAASD.AH.02.	NOAASD.AH.03.	NOAASD.AH.04.	NOAASD.AH.05.
	~	~	<	~	~
	×	~	~	~	~
	~	~	~	~	~
	~	~	~	~	~
	~	~	~	~	~
				0	0

01.

03.

- Interprets trendlog data from BAS, outputting useful charts/tables
- Identify anomalies and faults in **AHU** operation
- Allows for diagnosis of root causes and suggestions to resolve
- Identify opportunities for more advanced control strategies


ZoneRX (Terminal Equipment Analysis)

Key Report Components:

- **D** Zone Controller Operation Summary Table
- Data Visualization of the Analysis Tests
- Triaged Repair List

Zone Controller Operation Summary Table		
Item	Count	
ZCs with temperature control issues	6	
ZCs not controlling to room temperature (deviation >3°F)	5	
ZCs with valve control issues	1	
ZCs with airflow control issues	70	
ZCs not controlling to flow setpoint (deviation >10%)	70	
ZCs with dampers completely closed that still measure airflow	0	
ZCs with configuration or network issues	35	
ZCs showing factory default values for flow setpoint or calculation	25	
ZCs with mismatched HTG and CLG minimum flow setpoints	9	
Number of FLN devices that are failed	1	
Number of FLN devices that failed to respond due to panel issues	0	
Number of ZCs requiring field investigation ¹	93	
Number of hot water reheat ZCs with no aux temp	0	
Total number of ZCs evaluated	473	

Energy Cost Impact				
Item	Quantity [CFM]	Value		
[1] Excess airflow due to malfunctioning terminal equipment	4,366	\$3,257		
[2] Undetected leaking reheat valves	0	\$0		
[3] Increased minimum airflow due to configuration issues	4	\$154		

Zones Not Controlling to Flow Setpoint					
TEC	MODE	FLOW	FLOW STPT	Deviation	Notes
N.VAV.N05		205	2000	1795	DMPR: 100%
N.VAV.N118	COOL	254	1952	1698	
E.VAV.E134	COOL	1448	2985	1537	DMPR: 100%
W.VAV.W24	COOL	270	1800	1530	
W.VAV.W49	COOL	0	1500	1500	DMPR: 100%
W.CAV.W13	HEAT	3116	4500	1384	DMPR: 100%
E.VAV.E76	COOL	0	1300	1300	DMPR: 100%
C.CAV.C01	COOL	913	2200	1287	DMPR: 100%
E.VAV.E116	HEAT	0	1240	1240	DMPR: 100%
E.VAV.E15		1175	0	1175	DMPR: 0%

- Uses a snapshot of the building's zone controllers from BAS report
- Identifies faults & anomalies in terminal equipment behaviour
- Quantifies the energy cost impact (\$) of current operation

Fault Detection & Diagnostics (FDD)

FIM	Description			
Outside air temp sensor deviation	Determines downstream HVAC system operation and schedule, and can deliver high energy savings depending on the system configuration			
Boiler reset schedule deviation	This is often changed manually or not implemented, and adjustments can save up to 10% of facility energy consumption			
Chiller performance visibility	Shows chiller plant performance and identifies the need for a conversation about complete a chiller optimization strategy			
Supply air static pressure reset deviation	This demand-based system management can save up to 5% of facility energy consumption			
Supply air temperature reset schedule deviation	This is the most commonly overridden parameter, and adjustment can deliver a 5-10% energy impact			
Free cooling not enabled or not working	Improves economizer mode operation by using enthalpy- based operation, instead of straight dry bulb operation; this FIM can save 5-10% of energy spend			
Simultaneous heating and cooling elimination	Prevents reheating and recooling air simultaneously, which can save up to 20% of facility energy consumption			
Overventilation prevention	Prevents heating cold, outside air for no reason, and can save up to 18% of facility energy consumption			

- Online service that uploads data from the building automation system
- Detects problems as they occur

Conclusion

Contact

Luke Hancox, P. Eng, CBCP Senior Energy Service Engineer +1 902 579 7196 <u>luke.hancox@siemens.com</u> Kyle McCluskey, EIT Energy Service Engineer +1 902 579 7196 kyle.mccluskey@siemens.com

